Bibliography
- AS72
M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1972. URL: https://personal.math.ubc.ca/~cbm/aands/intro.htm.
- Bil95
P. Billingsley. Probability and Measure. John Wiley & Sons, 1995.
- Bis06
C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006. URL: https://www.microsoft.com/en-us/research/people/cmbishop/.
- BHK20
A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Cambridge University Press, 2020. URL: https://www.cs.cornell.edu/jeh/book.pdf.
- Bul03
P.S. Bullen. Handbook of Means and Their Inequalities. Springer Science+Business Media, Dordrecht, 2003.
- CH91
J.M. Chambers and T. Hastie. Statistical Models in S. Wadsworth & Brooks/Cole, 1991.
- CSN09
A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661–703, 2009. doi:10.1137/070710111.
- DJ03
T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003.
- Dat03
C.J. Date. An Introduction to Database Systems. Pearson, 2003.
- DFO20
M.P. Deisenroth, A.A. Faisal, and C.S. Ong. Mathematics for Machine Learning. Cambridge University Press, 2020. URL: https://mml-book.com/.
- DKLM05
F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A Modern Introduction to Probability and Statistics: Understanding Why and How. Springer, 2005.
- DGL96
L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1996. doi:10.1007/978-1-4612-0711-5.
- DD14
M.M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2014.
- FEHP10
C. Forbes, M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley, 2010.
- FD81
D. Freedman and P. Diaconis. On the histogram as a density estimator: L₂ theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57:453–476, 1981.
- Fri06
J.E.F. Friedl. Mastering Regular Expressions. O'Reilly, 2006.
- Gag15a
M. Gagolewski. Data Fusion: Theory, Methods, and Applications. Institute of Computer Science, Polish Academy of Sciences, 2015. ISBN 978-83-63159-20-7.
- Gag15b
M. Gagolewski. Spread measures and their relation to aggregation functions. European Journal of Operational Research, 241(2):469–477, 2015. doi:10.1016/j.ejor.2014.08.034.
- Gag22
M. Gagolewski. stringi: Fast and portable character string processing in R. Journal of Statistical Software, 2022. in press. URL: https://stringi.gagolewski.com.
- GBC16
M. Gagolewski, M. Bartoszuk, and A. Cena. Przetwarzanie i analiza danych w języku Python (Data Processing and Analysis in Python). PWN, 2016. ISBN 978-83-01-18940-2. in Polish.
- Gen03
J.E. Gentle. Random Number Generation and Monte Carlo Methods. Springer-Verlag, 2003.
- Gen09
J.E. Gentle. Computational Statistics. Springer-Verlag, 2009.
- Gen17
J.E. Gentle. Matrix Algebra: Theory, Computations and Applications in Statistics. Springer, 2017.
- Gen20
J.E. Gentle. Theory of Statistics. book draft, 2020. URL: https://mason.gmu.edu/~jgentle/books/MathStat.pdf.
- Gol91
D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 21(1):5–48, 1991. URL: https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf.
- GMMP09
M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Functions. Cambridge University Press, 2009.
- Gum39
E.J. Gumbel. La probabilité des hypothèses. Comptes Rendus de l'Académie des Sciences Paris, 209:645–647, 1939.
- H+20
C.R. Harris and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.
- HTF17
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag, 2017. URL: https://hastie.su.domains/ElemStatLearn/.
- Hig02
N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 2002. URL: https://dx.doi.org/10.1137/1.9780898718027.
- HU79
J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.
- Hun07
J.D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
- HA21
R.J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, 2021. URL: https://otexts.com/fpp3/.
- HF96
R.J. Hyndman and Y. Fan. Sample quantiles in statistical packages. American Statistician, 50(4):361–365, 1996. doi:10.2307/2684934.
- Kle51
S.C. Kleene. Representation of events in nerve nets and finite automata. Technical Report RM-704, The RAND Corporation, Santa Monica, CA, 1951. URL: https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf.
- Knu97
D.E. Knuth. The Art of Computer Programming II: Seminumerical Algorithms. Addison-Wesley, 1997.
- Kuc22
A.M. Kuchling. Regular Expression HOWTO. 2022. URL: https://docs.python.org/3/howto/regex.html.
- Lee11
J. Lee. A First Course in Combinatorial Optimisation. Cambridge University Press, 2011.
- LR02
R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, 2002.
- Llo2)
S.P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28:128–137, 1957 (1982). Originally a 1957 Bell Telephone Laboratories Research Report; republished in 1982. doi:10.1109/TIT.1982.1056489.
- McK17
W. McKinney. Python for Data Analysis. O'Reilly, 2017.
- MKK16
M. Modarres, M.P. Kaminskiy, and V. Krivtsov. Reliability Engineering and Risk Analysis: A Practical Guide. CRC Press, 2016.
- New05
M.E.J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, pages 323–351, 2005. doi:10.1080/00107510500052444.
- O+21
T. Oetiker and others. The Not So Short Introduction to LaTeX 2ε. 2021. URL: https://tobi.oetiker.ch/lshort/lshort.pdf.
- O+22
F.W.J. Olver and others. NIST Digital Library of Mathematical Functions. 2022. URL: https://dlmf.nist.gov/.
- OFK17
J.K. Ord, R. Fildes, and N. Kourentzes. Principles of Business Forecasting. Wessex Press, 2017.
- PVG+11
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
- PTVF07
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, 2007.
- PFBG19
R. Pérez-Fernández, B. De Baets, and M. Gagolewski. A taxonomy of monotonicity properties for the aggregation of multidimensional data. Information Fusion, 52:322–334, 2019. doi:10.1016/j.inffus.2019.05.006.
- RS59
M. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3:114–125, 1959.
- RT70
D.M. Ritchie and K.L. Thompson. QED text editor. Technical Report 70107-002, Bell Telephone Laboratories, Inc., 1970. URL: https://wayback.archive-it.org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf.
- RC04
C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, 2004.
- RRT99
P.J. Rousseeuw, I. Ruts, and J.W. Tukey. The bagplot: A bivariate boxplot. The American Statistician, 53(4):382–387, 1999. doi:10.2307/2686061.
- Rub76
D.B. Rubin. Inference and missing data. Biometrika, 63(3):581–590, 1976.
- Smi02
S.W. Smith. The Scientist and Engineer's Guide to Digital Signal Processing. Newnes, 2002. URL: https://www.dspguide.com/.
- Ste96
K. Steiglitz. A Digital Signal Processing Primer: With Applications to Digital Audio and Computer Music. Pearson, 1996.
- Tij03
H.C. Tijms. A First Course in Stochastic Models. Wiley, 2003.
- vB18
S. van Buuren. Flexible Imputation of Missing Data. CRC Press, 2018. URL: https://stefvanbuuren.name/fimd/.
- vdLdJ18
M. van der Loo and E. de Jonge. Statistical Data Cleaning with Applications in R. John Wiley & Sons, 2018.
- V+20
P. Virtanen and others. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.
- Was21
M.L. Waskom. seaborn: Statistical data visualization. Journal of Open Source Software, 6(60):3021, 2021. doi:10.21105/joss.03021.
- Wic11
H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):1–29, 2011. doi:10.18637/jss.v040.i01.
- Wic14
H. Wickham. Tidy data. Journal of Statistical Software, 59(10):1–23, 2014. doi:10.18637/jss.v059.i10.
- Xie15
Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2015.